LAPORAN PRAKTIKUM FISIKA
ELASTISITAS
BAB I
PENDAHULUAN
LandasanTeori
Elastisitas
Elastis atau elastisitas adalah kemampuan sebuah benda untuk kembali ke bentukawalnya ketika gaya luar yang diberikan pada benda tersebut dihilangkan. Jika sebuah gaya diberikan pada sebuah benda yang elastis, maka bentuk benda tersebut berubah. Untuk pegas dan karet, yang dimaksudkan dengan perubahan bentuk adalah pertambahan panjang.
Gaya yang diberikan memiliki batas-batas tertentu.Padasebuahkaretmisalnya,apabila gaya tarik yang diberikan sangat besar,dan melawati batas elastisitasnya,karettersebut bias putus. Demikian juga padasebuah pegas tidak akan kembali ke bentuk semula jika diregangkan dengan gaya yang sangat besar. Jadi benda-benda elastis tersebut memiliki batas elastisitas.
Rumus-rumusyangdigunakan:
Tegangan
Tegangandidefinisikan sebagai gaya persatuan luas.
Keterangan :
σ = Tegangan (N/m2 atau Pa)
F = gaya (N)
A = luas penampang (m2)
Regangan
Reganganmerupakanhasilbagiantarapertambahanpanjangdanpanjangmula-mula.
Keterangan :
e = Regangan
∆L = Pertambahanpanjang( m )
L0 = Panjangmula-mula( m)
Modulus Young
Modulus Young merupakan perbandingan antara tegangan dan regangan.
Keterangan :
E = Modulus Young ( N/m2 )
σ = Tegangan( N/m2 )
e = Regangan( m )
Hukum Hooke
Pengaruhgayapadaseutastaliataupadaseutaskawatataupadataliyaitudapatmenyebabkanpertambahanpanjang.
BunyiHukumHooke :
“Jikagayatariktidakmelampauibataselastisitaspegas,makapertambahanpanjangpegasberbandinglurus ( sebanding ) dengangayatariknya.”
Hukum Hooke padapegas:
Keterangan :
m = massa( kg )
g = percepatangravitasi( m/s2 )
∆x = Pertambahanpanjang( m )
L = Panjangakhir (m)
Lo = Panjangmula-mula( m )
Rangkaian pegas.
Rangkaian seri
Dua buah pegas atau lebih yang dirangkai secara seri akan memiliki prinsip sbb:
Gaya tarik pada pegas pengganti seri adalah sama dengan gaya tarik yang dialami masing-masing pegas.
Jika F1 dan F2 adalah gaya tarik yang dialami masing-masing pagas dan F adalah gaya tarik pada pegas penmgganti seri,maka
Pertambahan panjang pegas pengganti seri sama dengan jumlah pertambahan panjang masing-Masing pegas.
∆x1 dan ∆x2 adalah pertambahan panjang masing-masing pegas, dan ∆x adalah pertambahan panjang pegas pengganti seri,maka
Dua buah pegas atau lebih yang dirangkai secara seri akan memiliki nilai konstanta pegas total sebesar
Rangkaian paralel
Dua buah pegas atau lebih yang dirangkai secara paralel akan memiliki prinsip sbb:
Gaya tarik pada pegas pengganti paralel sama dengan jumlah gaya tarik pada masing-masing pagas.
Jika F adalah gaya tarik pada pegas pengganti paralel serta F1 dan F2 adalah gaya tarik pada masing-masing pagas,maka
Pertambahan panjang pegas pengganti paralel sama dengan pertambahan panjang masing-masing pegas.
Jika ∆x1 dan ∆x2 adalah pertambahan panjang masing-masing pegas, dan ∆x adalah pertambahan panjang pegas pengganti seri,maka
Dua buah pegas yang dirangkai secara paralel,memiliki konstanta pegas
Gerak Harmonik Sederhana
Setiap gerak yang terjadi secara berulang dalam selang waktu yang sama disebut gerakperiodik.Gerak harmonik sederhana didefinisikan sebagai gerak yang selalu dipengaruhi gaya yang besarnya berbanding lurus dengan jarak dari suatu titik dan yang arahnya selalu menuju ke titik tersebut.
Pada gerak harmonik sederhana,besar gaya pemulih pada
Pegas sebanding dengan jarak benda dari titik keseimbangannya.
Secara matematis,dapat ditulis sbb:
Tanda negatif pada persamaan tersebut menunjukkan bahwa arah F selalu berlawanan dengan arah x.
Selain pada pegas,gaya pemulih juga bekerja pada gerak harmonik bandul sederhana.Gaya pemulih pada bandul sederhana dapat ditentukan sebagai berikut:
Periode dan Frekuensi pada Pegas
Periode adalah waktu yang diperlukan benda untuk melakukan satu getaran(disebut satu getaran jika benda bergerak dari titik di mana benda tersebut mulai bergerak dankembali lagi ke titik tersebut ). Satuan periode adalah sekon atau detik.
Frekuensi adalah banyaknya getaran yang dilakukan olehbenda selama satu detik. Yang dimaksudkan dengan getaran di sini adalah getaran lengkap.Satuan frekuensi adalah 1/sekon atau s-1. 1/sekon atau s-1 disebut juga hertz.
Hubungan antar periode ( T ) dan frekuensi ( f ) dinyatakan oleh persamaan berikut.
BAB II
ISI
Tujuan
1.Menemukan konstanta pegas .
2.Menentukanperiodepadagerakharmoniksederhana.
2.2 Alat dan Bahan
.Pegas
.
Penggaris
Statip
. Busur
Karet Pentil
Karet Gelang
Beban
Stopwatch
Tali
Cara Kerja
Percobaan 1
Percobaan dengan menggunakan pegas
Siapkan semua alat dan bahan yang diperlukan.
Ukur panjang mula –mula ( L0 ) pada pegas menggunakan penggaris.
Gantungkan pegas pada statip ,kemudian berikan beban pada ujung pegas.
Ukur pertambahan panjang yang terjadi
Lakukan percobaan tadi berulang-ulang dengan massa beban yang berbeda.
Percobaan dengan menggunakan karet gelang.
Siapkan semua alat dan bahan yang diperlukan.
Ikatkan karet gelang pada statip.
Ukur panjang mula-mula ( L0 ) pada karet gelang menggunakan penggaris
Berikan beban pada karet gelang.
Ukur pertambahan panjang yang terjadi.
Lakukan percobaan tadi berulang-ulang dengan massa beban yang berbeda.
Percobaan dengan menggunakan karet pentil.
Siapkan semua alat dan bahan yang diperlukan.
Ikatkan karet pentil pada statip.
Ukur panjang mula-mula ( L0 ) pada karet pentil menggunakan penggaris.
Berikan beban Pada ujung karet pentil.
Ukur pertambahan panjang setelah diberi beban.
Lakukan percobaan tadi berulang-ulang dengan massa beban yang berbeda.
Percobaan dengan menggunakan pegas yang disusun secara seri
Siapkan dua buah pegas serta alat dan bahan yang diperlukan.
Gantung kedua buah pegas pada statip secara seri.
Ukur panjang mula-mula ( L0 ) kedua pegas tersebut menggunakan penggaris.
Berikan beban pada ujung pegas.
Ukur pertambahan panjang kedua pegas setelah diberi beban.
Lakukan percobaan tadi berulang-ulang dengan massa beban yang berbeda.
Percobaan Gerak Harmonik sederhana
Percobaan dengan menggunakan Tali
Siapkan semua alat dan bahan yang diperlukan.
Potong tali sesuai ukuran yang diinginkan.
Ikatkan tali pada statip,kemudian ukur panjang mula-mulanya.
Berikan beban pada ujung tali, kemudian ikat beban tersebut.
Ayunkan beban yang menggantung pada tali dengan sudut ≤ 10°
Dengan menggunakan periode 10,hitung waktu untuk menempuh periode tersebut menggunakan stopwatch.
Lakukan percobaan tadi berulang-berulang,dengan massa beban yang berbeda.
Percobaan menggunakan pegas.
Siapkan alat dan bahan yang diperlukan .
Gantung pegas pada statip,kemudian ukur panjang mula-mulanya.
Gantungkan beban pada ujung pegas dengan massa tertentu.
Tarik ujung pegas dengan periode 10,kemudian hitung waktu yang diperlukan untuk menempuh periode tersebut menggunakan stopwatch.
Lakukan percobaan tersebut berulang-ulang , dengan massa beban yang berbeda.
Hasil Pengamatan
Praktikum 1 (ELASTISITAS)
Percobaan dengan Per (Pegas)
No X0 (m) Xt (m) ∆x Massa (kg)
1 0,15 0,215 0,065 0,05
2 0,15 0,243 0,093 0,07
3 0,15 0,283 0,133 0,09
4 0,15 0,29 0,14 0,1
5 0,15 0,327 0,177 0,12
Percobaan dengan Karet Pentil
No X0 (m) Xt ∆x Massa (kg)
1 0,117 0,123 0,006 0,05
2 0,117 0,126 0,009 0,07
3 0,117 0,132 0,015 0,09
4 0,117 0,136 0,016 0,12
5 0,117 0,143 0,026 0,17
6 0,117 0,146 0,029 0,22
∑
Percobaan dengan Karet gelang
No X0 (m) Xt (m) ∆x (m) m (kg)
1 0,08 0,084 0,004 0,05
2 0,08 0,088 0,008 0,07
3 0,08 0,09 0,01 0,1
4 0,08 0,108 0,028 0,15
5 0,08 0,123 0,043 0,17
∑ 0,093
Percobaan dengan Pegas yang disusun secara seri
No X0 (m) Xt (m) ∆x (m) m (kg)
1 0,344 0,603 0,259 0,05
2 0,344 0,515 0,171 0,07
3 0,344 0,503 0,159 0,09
4 0,344 0,374 0,03 0,1
5 0,344 1,523 0,179 0,12
Praktikum 2 ( GerakHarmonikSederhana )
Percobaan dengan Per ( Pegas )
No X0 (m) m (kg) t (s)
1 0,325 0,1 10,26
2 0,325 0,1 10,39
3 0,325 0,1 10,95
4 0,325 0,1 10,54
5 0,325 0,1 10,35
6 0,325 0,1 10,71
7 0,325 0,1 10,48
8 0,325 0,1 10,66
9 0,325 0,1 10,53
10 0,325 0,1 10,44
Percobaan dengan Tali
No X0 (m) m (kg) t (s)
1 0,45 0,1 14,71
2 0,45 0,1 14,25
3 0,45 0,1 13,00
4 0,45 0,1 13,36
5 0,45 0,1 13,29
6 0,45 0,1 13,86
7 0,45 0,1 13,62
8 0,45 0,1 14,08
9 0,45 0,1 13,95
10 0,45 0,1 14,04
Pembahasan
PRAKTIKUM 1
Percobaan dengan pegas
TEORI
Pembahasan :
F1 = m1.g = 0,05 . 9,8 = 0,49
F2 = m2.g = 0,07 . 9,8 = 0,686
F3 = m3.g = 0,09 . 9,8 = 0,98
F4 = m4.g = 0,1 . 9,8 = 0,98
F5 = m5.g = 0,12 . 9,8 = 1,176
k1 = F1/∆x = 0,49/0,065 = 7,54 k4 = F4/∆x = 0,98/0,14 = 7
k2 = F2/∆x = 0,686/0,093 = 7,38 k5 = F5/∆x = 1,176/0,177 = 6,64
k3 = F3/∆x = 0,882/0,133 = 6,63
Tabel konstanta teori :
No K K2
1 7,54 56,85
2 7,38 54,46
3 6,63 43,95
4 7 49
5 6,64 44,09
∑ 35,19 248,35
(k ) ̅= (k1+k2+k3+k4+k5)/n
= (7,54+7,38+6,63+7+6,64)/5
= 35,19/5
= 7,038 N/m
∆kt= 1/n √((n∑▒k^2 -〖(∑k)〗^2)/(n-1))
= 1/5 √((5 x 248,36-(35,19)^2)/(5-1))
= 1/5 √((5 x 248,36-1238,33)/4)
= 1/5 √((1241,75-1238,33)/4)
= 1/5 √(3,42/4)
= 1/5 √0,855
= 1/5. 0,92
= 0,184 N/m
Kteori ¬= k ̅t + ∆kt
= 7,038 ± 0,184
K1 = 7,038 + 0,184 = 7,222 N/m K2 = 7,038 – 0,184 = 6,854 N/m
GrafikKonstantaTeori
PRAKTEK
Pembahasan :
F1 = m1.g = 0,05 . 9,8 = 0,49 = 0,5
F2 = m2.g = 0,07 . 9,8 = 0,686 = 0,7
F3 = m3.g = 0,09 . 9,8 = 0,882 = 0,9
F4= m5.g = 0,1 . 9,8 = 0.98 = 1
F5 = m4.g = 0,12 . 9,8 = 1,176 = 1,2
K1=F1/∆X =0,5/0,065=81,67 K4=F4/∆X=1/0.14=7,14
K2=F2/∆X=0.7/0,093=7,53 K5=F5/∆X=1,2/0,177=6,78
K3=F3/∆X=0,9/0,133=6,77
Tabel konstanta praktek ( K praktek )
No K k^2
1 7,70 59,29
2 7,53 56,70
3 6,77 45,83
4 7,14 50,98
5 6,78 45,97
"∑" 35,92 258,77
K ̅p =(K1+K2+K3+K4+K5)/n
=35,92/5
=7.184 N/m
∆K ̅p= 1/n √((nZ ̅K^2-〖(Z ̅K)〗^2)/(n-1))
=1/6 √((5 x 258,77-(35,92)2)/(5-1))
=1/5 √((1293,85-1290.25)/4)
=1/5 √(3,6/4)
=1/5 √(o.9)
=1/5 . 0.95
=0,19 N/m
Kp = k ̅p ±∆kp
= k ̅±∆k = 7,184 ± 0,19
K1 = 7,184 + 0,19 = 7,374 N/m
K2 = 7,184 – 0,19 = 6,994 N/m
Grafik konstanta praktek ( k.teori)
Error percobaan :
Error : (Kpraktek-Kteori)/Kteori x 100%
: (7,184-7,038)/7,038 x 100%
: 0,146/7,038 x 100%
: 0,0207 x 100 %
: 2,07 %
Percobaan dengan karet pentil
TEORI
F1 = m1.g = 0,05 . 9,8 = 0,49
F2 = m2.g = 0,07 . 9,8 = 0,686
F3 = m3.g = 0,09 . 9,8 = 0,882
F4 = m4.g = 0,12 . 9,8 = 1,176
F 5= m5.g = 0,17 . 9,8 = 1,666
F6 = m6.g = 0,22 . 9,8 = 2,156
K1 = F1/∆X1= 0,49/0,006=81,66
K2 = F2/∆X2= 0,686/0,009=76,22
K3 = F3/(∆X3 )= 0,882/0,015=58,8
K4 = F4/(∆X4 )= 1,176/0,016=73,5
K5 = F5/∆X5 = 1,666/0,026 = 64,07
K6= f6/∆x6= 2,156/0,029 =74,34
Tabel konstanta teori ( k teori)
No K K2
1 81,66 6668,35
2 76,22 5809,48
3 58,8 3457,44
4 73,5 5402,25
5 64,07 4104,96
6 74,34 5526,43
∑ 428,59 30968,91
Kp = (k1+k2+k3+k4+k5)/n
= 428,59/(5 )=71,43 N/m
∆kp= 1/n √((n∑k^(2 )-(∑k)^2)/(n-1))
= 1/6 √((6x 30968,91-〖( 428,91 )〗^2)/(6-1))
=1/6 √((185813,46-183689,38)/5)
=1/6 √(2124,08/5)
= 1/6 √424,816
=1/6 20,61
= 3,435N/m
Kt = k ̅t±∆Kp
K = k ̅±∆Kt
= 71,43± 3,435
K1 = 71,43 +3,435
= 74,865
K2 = 71,43 – 3,435
= 67,995
Grafikkonstanateori
PRAKTEK
FP = m.g
F1 = m1.g = 0,05 . 9,8 = 0,49 = 0,5
F2 = m2.g = 0,07 . 9,8 = 0,686 = 0,7
F3 = m3.g = 0,09 . 9,8 = 0,882 = 0,9
F4 = m4.g = 0,12 . 9,8 = 1,176 = 1,2
F5 = m5.g = 0,17 . 9,8 = 1,666 = 1,7
F6 = m6.g = 0,22 . 9,8 = 2,156 = 2,2
KP = Fp/∆x
K1 = F1/∆X1= 0,5/0,006=83,33
K2 =F2/∆X2= 0,7/0,009=77,78
K3 =F3/∆X3= 0,9/0,015=60
K4 = F4/∆X4= 1,2/0,016 = 75
K5 = F5/∆X5= 1,7/0.026=65,38
K6 = F6/∆X6= 2,2/0,029=75,8
Tabel konstanta praktek (Kpraktek )
No K K2
1 83,33 6943,89
2 77,78 6049,73
3 60 3600
4 75 5625
5 65,38 4274,54
6 75,86 5756,74
∑ 437,35 32247,9
K ̅p= (k1+k2+k3+k4+k5)/n
= 437,35/6=72,89
∆kp= 1/n √((n∑k^(2 )-(∑k)^2)/(n-1))
= 1/6 √((6 x 32247,9-(437,35))^2)/(6-1))
=1/6 √((193487,4-191275,02)/5)
=1/6 √(2212,38/5)
=1/6 √424,476
= 3,506 N/m
Kp = k ̅p±∆k
Kp = k ̅p±∆k
= 72,89 ± 3,506
K1 = 72,89 + 3,506 = 76,396 N/m
K2 = 72,89 – 3,506 = 69,384 N/m
Grafikkonstantapraktek
Error percobaan
Error : (Kpraktek-Kteori)/Kteori x 100%
: (72,89-71,43)/71,43 x 100%
: 1,46/71,43 x 100%
: 0,0204 x 100 %
: 2,04 %
Percobaan dengan Karet Gelang
TEORI
PEMBAHASAN
Ft = m.g
F1 = m1.g = 0,05 . 9.8 = 0,49
F2 = m2.g = 0,07 . 9,8 = 0,686
F3 = m3.g = 0,1 . 9,8 = 0,98
F4 = m4.g = 0,15 . 9,8 = 1,47
F5 = m5.g = 0,17 . 9,8 = 1,666
Kt =fTEORI/∆x
K1=F1/∆X=0,49/0,004=122,5
K2=F2/∆X=0,686/0,008=85,75
K3=F3/∆X=0.98/0,01=98
K4=F4/∆x=1,47/0,028=52,5
K5=F5/∆x=1,666/0,043=38,74
TABEL KONSTANTA TEORI (Kteori )
No K K2
1 122,5 15006,25
2 85,75 7353,06
3 98 9604
4 52,5 2756,25
5 38,74 1500,78
∑ 397,49 36220,34
K ̅t = (K1+K2+K3+K4+K5)/n
=397,49/5 = 79,4 N/m
∆(Kt) ̅ = 1/n √((nZ ̅K^2-〖(Z ̅K)〗^2)/(n-1))
= 1/5 √((5×36.220,34-(397,49)2)/4)
= 1/5 √((181101,7-157998,3)/4)
= 1/5 √(23103,4/4)
= 1/5 √5.775,85
=1/575,99
=15,198 N/m
KT =k ̅t±∆kt
Kt = k ̅t±∆kt
= 79,4 ± 15,198
K1 = 79,4 + 15,198
= 94,598
= 94,6
K2 = 79,4 – 15,198
= 64,202
Grafikkonstanateori
PRAKTEK
Fpraktek = m.g
F1 = m1.g = 0,05 . 9.8 = 0,49 = 0,5
F2 = m2.g = 0,07 . 9,8 = 0,686 = 0,7
F3 = m3.g = 0,1 . 9,8 = 0,98 = 1
F4 = m4.g = 0,15 . 9,8 = 1,47 = 1,5
F5 = m5.g = 0,17 . 9,8 = 1,666 = 1,7
Kpraktek= Fp/∆x
K1 =F1/∆x1= 0,5/0,004=125
K2 =F2/∆x2= 0,7/0,008=87,5
K3 =F3/∆x3= 0,98/0,01=98
K4 = F4/∆x4= 1,5/0,028 = 53,57
K5 =F5/∆x5= 1,7/0.043=39,53
Tabelkonstantapraktek
No K K2
1 125 15625
2 87,5 7656,25
3 98 9604
4 53,57 2869,74
5 39,53 1562,62
∑ 403,6 37317,61
k ̅= (k1+k2+k3+k4+k5)/n
=403,6/5 = 80,72
∆(k ) ̅praktek= 1/n √((n∑k^2-〖( ∑k )〗^2)/(n-1))
= 1/5 √((5×37317,61-(403,6)2)/4)
= 1/5 √((186588,05-162892,96)/4)
= 1/5 √(23695,09/4)
= 1/5 √5.923,7725
=1/576,97
=15,394
Kp= (kp) ̅ ± ∆kp
Kp = k ̅p ± ∆kp
= 80,72 ± 15,394
K1 = 80,72 + 15,394
= 96,114 N/m
K2 = 80,72 – 15,394
= 65,326 N/m
Grafikkonstantapraktek
Error percobaan
Error : (kpraktek-kteori)/kteori× 100%
: (80,72-79,4)/79,4×100%
: 1,32/79,4× 100%
: 0,016 x 100 %
: 1,6%
PercobaanPegasdisusunseri
TEORI
PEMBAHASAN
Ft= m.g
F1 = m1.g = 0,05 . 9.8 = 0,49
F2 = m2.g = 0,07 . 9,8 = 0,686
F3 = m3.g = 0,1 . 9,8 = 0,98
F4 = m4.g = 0,15 . 9,8 = 1,47
F5 = m5.g = 0,12. 9,8 = 1,176
K1=F1/∆x1=0,49/0,259= 1,89
K2=F2/( ∆x2)=0,686/( 0,171)= 4,01
K3=F3/∆x3=0,882/0,159= 5,54
K4=F4/∆x4=0,98/0,03= 32,66
K5=F5/∆x5=1,176/0,179= 6,.56
Tabelkonstantateori
No K K2
1 1,89 3,5721
2 4,01 16,0801
3 5,54 30,6916
4 32,66 1066,67
5 6,56 43,0336
∑ 50,66 1160,047
k ̅= (k1+k2+k3+k4+k5)/n
=50,66/5
= 10,132
∆(k ) ̅teori= 1/n √((n∑k^2-〖( ∑k )〗^2)/(n-1))
= 1/5 √((5×1.160,047-〖( 50,66 )〗^2)/(5-1))
=1/5 √((5.800,23-2.566,43)/4)
= 1/5 √(3.233,8/4)
= 1/5 √808,45
= 1/5 .28,43
= 5,686 N/m
KT =k ̅ ± ∆k
Kt = k ̅ ± ∆k
= 10,132±5,686
K1 = 10,132+ 5,686
= 15,818 N/m
K2 = 10,132– 5,686
= 4,446 N/m
Grafikkonstantateori
PRAKTEK
Fpraktek = m.g
F1 = m1.g = 0,05 . 9.8 = 0,49 = 0,5
F2 = m2.g = 0,07 . 9,8 = 0,686 = 0,7
F3 = m3.g = 0,09 . 9,8 = 0,882 = 0,9
F4 = m4.g = 0,1. 9,8 = 0,98 = 1
F5 = m5.g = 0,12. 9,8 = 1,666 = 1,2
Kpraktek= Fp/∆x
K1 = F1/∆x1= 0,5/0,259= 1,93
K2 =F2/∆x2= 0,7/0,171=4,1
K3 =F3/∆x3= 0,9/0,159=5,66
K4 = F4/∆x4= 1/0,03 = 33,33
K5 = F5/∆x5= 1,2/0.179=6,70
Tabelkonstantapraktek
No K K2
1 1,93 3,73
2 4,1 16,81
3 5,66 32,04
4 33,33 1110,89
5 6,70 44,89
∑ 51,72 1208,36
k ̅p= (k1+k2+k3+k4+k5)/n
= 51,72/5=10,344
∆(k ) ̅praktek= 1/n √((n∑k^2-〖( ∑k )〗^2)/(n-1))
= 1/5 √((5×1208,3- 〖( 51,72 )〗^2)/4)
= 1/5 √((6041,8-2674,95)/4)
= 1/5 √(3366,85/4)
= 1/5 √841,7125
=1/5 29,01
= 5,802 N/m
Kp= (kp) ̅ ± ∆kp
Kp =(kp) ̅ ± ∆kp
= 10,344±5,802
K1 = 10,344+ 5,802
= 16,146 N/m
K2 = 10,344– 5,802
= 4,542N/m
Grafikkonstantapraktek
Error percobaan
Error : (kpraktek-kteori)/kteori× 100%
: (10,344-10,132)/10,132× 100%
: 0,212/10,132× 100%
: 0,0209 x 100 %
: 2,09 %
PRAKTIKUM 2
Percobaan dengan pegas
No Xo (m) m (kg) t (s)
1 0,325 0,1 10,26
2 0,325 0,1 10,39
3 0,325 0,1 10,95
4 0,325 0,1 10,54
5 0,325 0,1 10,35
6 0,325 0,1 10,71
7 0,325 0,1 10,48
8 0,325 0,1 10,66
9 0,325 0,1 10,53
10 0,325 0,1 10,44
∑ 105,31
t ̅= (∑t)/n=105,31/10=10,531
T ̅= t ̅/n = 10,531/10 = 1,0531
ω=2π/T
= (2×3,14)/1,0531
= 6,28/1,0531
= 5,96
k = m.ω^2
= 0,1 . 〖( 5,96 )〗^2
=0,1 . 35,52
= 3,552
T praktek = 1,0531
Tteori = 2π √(m/k)
= 2 . 3,14√(0,1/3,552)
= 6,28√0,028
= 6,28 . 0,16
= 1,0048
ERROR PERCOBAAN
T praktek = 1,0531
T teori = 1,0048
Error = (Tpraktek-Tteori)/Tteori ×100%
= (1,0531-1,0048)/1,0048 ×100%
= 0,0483/1,0048 ×100%
= 0,048 × 100%
= 4,8 %
Perbedaan dengan tali
No Xo (m) m (kg) t (s)
1 0,45 0,1 14,71
2 0,45 0,1 14,25
3 0,45 0,1 13,00
4 0,45 0,1 13,36
5 0,45 0,1 13,29
6 0,45 0,1 13,86
7 0,45 0,1 13,62
8 0,45 0,1 14,08
9 0,45 0,1 13,95
10 0,45 0,1 14,04
∑ 138,16
t ̅= (∑t)/n=138,16/10=13,816
T ̅= t/n = 13,816/10 = 1,3816
ω=2π/T
= (2×3,14)/1,3816
= 6,28/1,3816
= 4,55
k = m.ω^2
= 0,1 . 〖( 4,55)〗^2
=0,1 . 20,70
= 2,07
T praktek = 1,3816
Tteori = 2π √(m/k)
= 2 . 3,14√(0,1/2,07)
= 6,28√0,048
= 6,28 . 0,21
= 1,3188
ERROR PERCOBAAN
T praktek = 1,0531
T teori = 1,0048
Error = (Tpraktek-T teori)/Tteori ×100%
= (1,3816-1,3188)/1,3188 ×100%
= 0,0628/1,3188 ×100%
= 0,047 × 100% = 4,7 %
BAB I
PENUTUP
KESIMPULAN
Berdasarkanpembahasandiatas,dapatdisimpulkanbahwa :
PRAKTIKUM 1
Percobaandenganpegas
Teori
t ̅teori = 7,038 N/m
∆kteori = 0,184 N/m
kteori = k1 = 7,222 N/m
k2 = 6,854N/m
Praktek
t ̅praktek = 7,184N/m
∆kpraktek = 0,19 N/m
kpraktek = k1 = 7,374 N/m
k2 = 6,994N/m
Error Percobaan = 2,07 %
Percobaandengankaretpentil
Teori
t ̅teori = 71,43 N/m
∆kteori = 3,435 N/m
kteori = k1 = 74,865 N/m
k2 = 67,995N/m
Praktek
t ̅praktek = 72,89N/m
∆kpraktek = 3,506N/m
kpraktek = k1 = 76,396 N/m
k2 = 69,384N/m
Error Percobaan = 2,04 %
Percobaandengankaretgelang
Teori
tteori = 79,4N/m
∆kteori = 15,198N/m
kteori = k1 = 94,6 N/m
k2 = 64,202N/m
Praktek
tpraktek = 80,72N/m
∆kpraktek = 15,394N/m
kpraktek = k1 = 96,114 N/m
k2 = 65,326 N/m
Error Percobaan = 1,6%
Percobaandengan 2 pegas yang disusunseri
Teori
t ̅teori = 10,132N/m
∆kteori = 5,686N/m
kteori = k1 = 15,818 N/m
k2 = 4,446N/m
Praktek
t ̅praktek = 10,344 N/m
∆kpraktek = 5,802 N/m
kpraktek = k1 = 16,146 N/m
k2 = 4,542N/m
Error Percobaan = 2,09%
PRAKTIKUM 2 ( GerakHarmonikSederhana )
Percobaandenganpegas
t ̅ = 10,531 s
T ̅= 1,0531 s
ω= 5,96 rad/s
k= 3,552 N/m
Tpraktek = 1,0531 s
Tteori = 1,0048 s
Error Percobaan = 4,8 %
Percobaandengantali
t ̅ = 13,816 s
T ̅= 1,3816 s
ω= 4,55 rad/s
k = 2,07 N/m
Tpraktek = 1,31816 s
Tteori = 1,3188s
Error Percobaan = 4,7%
DaftarPustaka
http://www.scribd.com/doc/5813298/FISIKA-elastisitas
http://www.scribd.com/doc/38205425/Hukum-Hooke-Dan-Elastisitas
http://www.scribd.com/doc/5813298/FISIKA-elastisitas
Sunardi,danEtsaIndra Irawan.2006.Fisika Bilingual kelas XI .Bandung : YramaWidya
Tampilkan postingan dengan label Fisika SMA. Tampilkan semua postingan
Tampilkan postingan dengan label Fisika SMA. Tampilkan semua postingan
Jumat, 02 Mei 2014
Latihan Soal Fisika-Gelombang
1.
Guitar string guitar strings to resonate with
the other when the two strings are the same ...
a. Voltage.
b. Length.
c. Frequency.
d. Broad cross-section.
Discussion:
Resonance is an event participated pulsate an object due to the influence of other objects the same frequency.
a. Voltage.
b. Length.
c. Frequency.
d. Broad cross-section.
Discussion:
Resonance is an event participated pulsate an object due to the influence of other objects the same frequency.
2.
Propagation of sound waves in the air have
a pattern ...
a. Long and short wave.
b. Density and renggangan
c. Peak and base
d. Mountains and valleys
Discussion:
The sound is one example of longitudinal waves. The characteristics of longitudinal waves:
- Waves that have a direction parallel resistance (direction) to the direction of vibration.
- Consists of renggangan and density.
- These waves can occur in solid, liquid or gas but not in a vacuum.
- Not having amplitude.
Thus, sound waves propagate with renggangan pattern and density.
a. Long and short wave.
b. Density and renggangan
c. Peak and base
d. Mountains and valleys
Discussion:
The sound is one example of longitudinal waves. The characteristics of longitudinal waves:
- Waves that have a direction parallel resistance (direction) to the direction of vibration.
- Consists of renggangan and density.
- These waves can occur in solid, liquid or gas but not in a vacuum.
- Not having amplitude.
Thus, sound waves propagate with renggangan pattern and density.
3.
An insect prey can hear sound frequencies
in the range 15Hz. The sound on
these frequencies including ...
a. Supersonic
b. Infrasound
c. Untrasonic
d. Audiosonic
Discussion:
- Supersonic: planes that have a high speed.
- Infrasound: sounds that have a frequency of less than 20Hz
- Ultrasound: sound that has a frequency of more than 20.000Hz
- Audiosonic: sounds that have frequencies between 20Hz to 20.000Hz.sound that can be heard by humans.
a. Supersonic
b. Infrasound
c. Untrasonic
d. Audiosonic
Discussion:
- Supersonic: planes that have a high speed.
- Infrasound: sounds that have a frequency of less than 20Hz
- Ultrasound: sound that has a frequency of more than 20.000Hz
- Audiosonic: sounds that have frequencies between 20Hz to 20.000Hz.sound that can be heard by humans.
4.
Apollo aircraft noise can not be heard on the
moon the astronauts on the moon because of ...
a. No steam.
b. Vacuum.
c. Temperature is too high.
d. Pressure is very low.
Discussion:
Month vacuum so that no particles that deliver sound. Aircraft noise on the moon can not be heard at all the astronauts.
a. No steam.
b. Vacuum.
c. Temperature is too high.
d. Pressure is very low.
Discussion:
Month vacuum so that no particles that deliver sound. Aircraft noise on the moon can not be heard at all the astronauts.
5.
Pitch a string greater if ...
a. The length of wire and string enlarged section area stringed minimized.
b. Voltage and string minimized.
c. Voltage and wire cross-sectional area is enlarged.
d. Long strings of string tension is reduced and enlarged.
Discussion:
Pitch four factors influenced strings. Pitch / frequency of the larger wire if:
- The length of wire strings shortened / reduced.
- Wire cross-sectional area is minimized.
- Style tense wire string enlarged.
- The density of strings is minimized.
a. The length of wire and string enlarged section area stringed minimized.
b. Voltage and string minimized.
c. Voltage and wire cross-sectional area is enlarged.
d. Long strings of string tension is reduced and enlarged.
Discussion:
Pitch four factors influenced strings. Pitch / frequency of the larger wire if:
- The length of wire strings shortened / reduced.
- Wire cross-sectional area is minimized.
- Style tense wire string enlarged.
- The density of strings is minimized.
6.
A source emits with intensity 10-5
watt/m2. If the intensity threshold value 10-12 watt/m2, determine
the level of intensity of the sound!
Discussion :
To calculate the intensity of a sound level
using the following equation :
of the data obtained about :
7.
A child is at a distance of 100 m from a source
of sound power 12.56 watts. Determine the level of intensity of the sound is
heard the child if Π is 3.14 and the hearing threshold intensity I0 = 10-12
watt/m2!
Discussion :
To determine the intensity of the sound
level using the following equation :
The sound intensity level
Sound Intensity
Where P is power in watts, and A is the
area in units of m2, assuming the sound spreads evenly to form an area in the
form of a ball so that A = 4 Πr2, where r is the radius of the ball or equal to
the distance of the child from the sound source.
So:
If the child is heard a blast with the
intensity level of 120 dB, determine the level of intensity is heard another
child who was at a distance of 180 m from the first child!
Discussion :
To determine the intensity level of a sound
source heard from two different places used the following equation:
r1 is the distance to the first child of
the sound source (20 m) and r2 is the distance of the second of the sound
source (180 +20 = 200 m)
9.
A factory has 100 identical machines. If a machine
has a sound intensity level of 70 dB, determine the value of the intensity
level of the sound is heard when all the machines in the factory turned on
simultaneously!
Discussion :
To determine the intensity of the sound by
Taraf many identical sources using the following equation:
where TI1 is IT a source of sound and
n is the number of sound sources. So that :
10.
Determine the value of comparative intensity of
a sound source from two places, namely A, which is 4 m from the source and from
B within 9 m from the source!
Discussion :
The intensity of a sound source from two
different places:
11. A spectator at the race car heard the sound (roar of the
cars) were different, when a car approaching and away. Average race car emits
800 Hz. If the speed of sound in air 340 ms-1 speed and 20 ms-1, the frequency
of which is heard when the car is approaching ....
A. 805 Hz
B. 810 Hz
C. 815 Hz
D. 850 Hz
E. 875 Hz
Discussion :
The application of the Doppler effect, the listener in a
stationary position means Vp = ZERO, sources close to the listener is a sign
for negative Vs.
12. A 1 kHz sound source moves directly toward the listener
a break at a pace of 0.9 times the speed of sound. Frequency in kHz is received
....
A. 10.0
B. 1.9
C. 1.1
D. 0.5
E. 0.1
Discussion :
13. Piano string length of 0.5 m and a mass of 10-2
kg stretched 200 N, then the basic piano tone is frequency ....
A. 100 Hz
B. 200 Hz
C. 400 Hz
D. 600 Hz
E. 800 Hz
Discussion :
Wave velocity in the string is:
Base notes on the strings occurs when:

Frequency string:
Formula:

14. An open organ pipe produces tones at a frequency of 150
Hz. Determine the frequency of the second tone of the pipe organ!
Discussion :
Comparison of frequency tones, the first tone, the tone on
the second and so on of a closed organ pipe is:
F0: F1: F2: F3: ..... = 1: 3: 5: 7: .....
If you take the comparison between f2 and f0 obtained:
15. Rows of railroad car that is pulled by a locomotive
leaving the station Tanjung Karang moving at a pace of 36 km / h. At that time,
an officer at the station blew the whistle with a frequency 1700 Hz. If the
speed of propagation of sound waves in the air 340 ms-1, find the frequency
whistle is heard by an observer in the train.
Discussion:
Given: vp = 36 km / hr = 10ms-1 ; vs = 340 ms-1;
fs = 1700 Hz
So the frequency of the whistle is heard by an observer on
the train at 1650 Hz.
16. The noise of a typewriter equal to 70 dB. How dB noise
due to 100 pieces an office typewriter?
Discussion:
Consider the intensity of the typewriter = I1
the intensity of 100 typewriters I1 = I2 = 100,
Find additional noise due to 100 typewriter:
∆TI = 10 log I2/I1 = 10 log 100 = 20 dB
I1/I1
So noise is 100 typewriters: TI1 + TI2 = ∆TI = 90 Db
17. Sound waves from a source having
the propagation of 340 m / s. If the frequency of sound waves is 500 Hz,
determine the wavelength!
Discussion :
Data about:
ν = 340 m / s
f = 500 Hz
λ = ?
Relations wavelength, wave propagation
and frequency:
λ = ν / f
λ = 340/500
λ = 0.68 m
18. A child hear the sound that has a
wavelength of 5 meters. If the propagation of sound in air is 340 m / s, find:
a) the frequency of the sound source
b) the period of the sound source
Discussion :
Data about:
ν = 340 m / s
λ = 5 m
f = .......... Hz
Relations wavelength, wave propagation
and frequency:
f = ν / λ
f = 340/5
f = 68 Hz
19. A ship of a sea depth gauge using
the sound device. Beep fired into the bottom waters and 5 seconds later
reflected sound arriving back at the ship. If the propagation of sound in water
is 1500 m / s, determine the depth of the waters!
Discussion :
Determine the distance of two points
(depth) with the reflection of sound:
S = (ν x t) / 2
S = (1500 x 5) / 2
S = 3750 meters
20. When the weather was cloudy a
child heard the thunder of 1.5 seconds after the visible lightning. If the
propagation of sound in air is 320 m / s, determine the distance of the source
of the child's thunder!
Discussion :
Determine the distance of two points
with no sound reflections:
S = ν x t
S = 320 x 1.5
S = 480 m
21. Sound waves with a frequency of 5 kHz
propagating in air with a temperature of 30 ° C. If the propagation of sound in
air at 0 ° C is 330 m / s, find:
a) the propagation of sound
b) the length of the sound wave
Discussion :
The difference in the propagation of
sound due to the differences / changes in air temperature:
ν = ν0 + 0.6 t
ν = 330 + (0.6 x 30)
ν = 348 m / s
22. Sound with a wavelength of 1.5 m
has a propagation speed of 330 m / s. Can sound be heard by the human ear
normal?
Discussion :
Looking frequency first:
f = ν / λ
f = 330 / 1.5
f = 220 Hz
Sounds with frequencies between 20 and
20,000 Hz audiosonik considered, can be heard by humans.
Learn more:
infrasound: sound frequencies less
than 20 Hz
ultrasonic: sound frequencies greater
than 20000 Hz
23. A first resonance occurs when the
air column tube tube length of 15 cm. Define:
a) the wavelength of the sound
b) the length of the air column during
the second resonance
c) the length of the air column during
the third resonasi
d) the length of the air column
resonance during the fourth
e) the frequency of the sound, if the
propagation of sound is 340 m / s
Discussion :
a) the wavelength of the sound
The first resonance → L = (1/4) x λ
15 = (1/4) x λ
λ = 4 x 15
λ = 60 cm
b) the length of the air column during
the second resonance
The second resonance → L = (3/4) x λ
L = (3/4) x 60 cm
L = 45 cm
c) the length of the air column during
the third resonasi
The third resonance → L = (5/4) x λ
L = (5/4) x 60 cm
L = 75 cm
d) the length of the air column
resonance during the fourth
Fourth resonance → L = (7/4) x λ
L = (7/4) x 60 cm
L = 105 cm
e) the frequency of the sound, if the
propagation of sound is 339 m / s
λ = 60 cm = 0.6 meters
ν = 339 m / s
f = ?
f = ν / λ
f = 339 / 0.6
f = 565 Hz
24. Determine the ratio of the
frequency of which is owned by a string A string length of 100 cm and a length
of 50 cm B if the two strings are made of the same material
Discussion :
fA / fB = LB / LA
fA / fB = 50/100
fA: fB = 1: 2
25. Strings I and II strings are the
same length. If the cross-section area stringed I was three times the size of
the string section II, specify:
a) comparison of the frequency of the
strings I and II strings, consider the strings have the same voltage
b) the frequency of the strings II if
the frequency of the strings I was 500 Hz
Discussion:
a) f1 / f2 = A2 / A1
f1 / f2 = A2 / 3A2
f1: f2 = 1: 3
b) f1: f2 = 1: 3
f2 = 3 x f1
f2 = 3 x 500
f2 = 1500 Hz
Langganan:
Postingan (Atom)